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ABSTRACT

Evaluation of model skill in predicting winds over the ocean was performed by comparing retrospective

runs of numerical weather prediction (NWP) forecastmodels to shipborneDoppler lidarmeasurements in the

Gulf of Maine, a potential region for U.S. coastal wind farm development. Deployed on board the NOAA

R/V Ronald H. Brown during a 2004 field campaign, the high-resolution Doppler lidar (HRDL) provided

accurate motion-compensated wind measurements from the water surface up through several hundred

meters of the marine atmospheric boundary layer (MABL). The quality and resolution of the HRDL data

allow detailed analysis of wind flow at heights within the rotor layer of modern wind turbines and data on

other critical variables to be obtained, such as wind speed and direction shear, turbulence, low-level jet

properties, ramp events, and many other wind-energy-relevant aspects of the flow. This study will focus on

the quantitative validation of NWP models’ wind forecasts within the lower MABL by comparison with

HRDL measurements. Validation of two modeling systems rerun in special configurations for these 2004

cases—the hourly updated Rapid Refresh (RAP) system and a special hourly updated version of the North

American Mesoscale Forecast System [NAM Rapid Refresh (NAMRR)]—are presented. These models

were run at both normal-resolution (RAP, 13 km; NAMRR, 12 km) and high-resolution versions: the

NAMRR-CONUS-nest (4 km) and the High-Resolution Rapid Refresh (HRRR, 3 km). Each model was

run twice: with (experimental runs) and without (control runs) assimilation of data from 11 wind profiling

radars located along the U.S. East Coast. The impact of the additional assimilation of the 11 profilers was

estimated by comparing HRDL data to modeled winds from both runs. The results obtained demonstrate the

importance of high-resolution lidar measurements to validate NWP models and to better understand what

atmospheric conditions may impact the accuracy of wind forecasts in the marine atmospheric boundary layer.

Results of this research will also provide a first guess as to the uncertainties of wind resource assessment using

NWP models in one of the U.S. offshore areas projected for wind plant development.

1. Introduction

Assessment and improvement of numerical weather

prediction (NWP) model skill require accurate profile

measurements of meteorological quantities, including

wind. Here we use high-precision, high-resolution wind

profiles measured by shipborne Doppler lidar during a

monthlong research cruise to evaluate the performance

of two modeling systems in the marine atmosphere over

the Gulf of Maine, an especially difficult environment in

which to obtain such measurements. The focus of this

research is on using these measurements and models to

support the emerging offshore wind energy industry,

which has an urgent need for wind data in the turbine-

rotor layer of the marine atmospheric boundary layer

(MABL). Offshore locations off the coast of the United

States show great potential for generating electrical

power from the wind (Schwartz et al. 2010; Musial and

Ram 2010). Direct measurements of wind properties
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within the turbine-rotor layer of the atmosphere over

the ocean are rare, and have not contributed to attempts

to estimate the U.S. offshore wind resource or to de-

scribe offshore wind characteristics (Elliott et al. 2012;

Drechsel et al. 2012).

Because of the lack of appropriate measurements

offshore, current estimates of this resource have been

obtained from NWP model output (e.g., Schwartz et al.

2010; Musial and Ram 2010; James et al. 2017, manu-

script submitted to Wind Energy), by extrapolation of

shoreline measurements outward over the ocean or

other water body (such as the Great Lakes), or by ver-

tical extrapolation from measurements near the water

surface. However, the lack of quality offshore profile

measurements means that NWP output has not been

well validated there and that the extrapolations may

lead to significant errors in estimating winds at hub

height (Nunalee and Basu 2014; Pichugina et al. 2017).

The high potential of the area off theU.S. East Coast for

wind energy (WE) development (Musial and Butterfield

2004) requires measurement campaigns to obtain infor-

mation on turbine-level winds. Such measurement cam-

paigns offshore are expected to be expensive; therefore, an

effort to use existing wind profile datasets was made by

Pichugina et al. (2012) to characterize the rotor-layer

winds, including their spatial and temporal variability and

vertical structure. Results from this research led to the

DOE–NOAA collaborative project the Positioning of

Offshore Wind Energy Resources (POWER) project

(Banta et al. 2014). The present paper describes results

from that project. One of the key objectives of the

POWER study was to verify hub-height winds predicted

by two differentNOAANWP forecastmodels, to address

the need to verify NWP models over the ocean for wind

energy and other applications.

The present study uses high-resolution wind profile

measurements from NOAA’s scanning high-resolution

Doppler lidar (HRDL) mounted on a research ship that

sailed in the Gulf of Maine during the New England Air

Quality Study (NEAQS-04) in the summer of 2004

(Pichugina et al. 2012). The lidar dataset is used to

evaluate NWP model skill in simulating offshore winds

through and above the turbine-rotor layer. The two

modeling systems used for validation were a special

hourly updated version of NOAA’s North American

Mesoscale Forecast System (NAM), known as NAM

Rapid Refresh (NAMRR), and the hourly updated

Rapid Refresh (RAP) system. The two modeling sys-

tems used were run at both normal-resolution (‘‘parent’’

domain model) and high-resolution versions: the

NAMRR-CONUS-nest and the High-Resolution Rapid

Refresh (HRRR), respectively.

Hourly measurements of wind speed and direction

from an array of 11 coastal and inland 915-MHz wind

profiling radars (profilers) were also available as part of

the NEAQS-04 experiment, located along the coastal

area (Fig. 1). In the POWERexperiment, data from these

profilers were assimilated into experimentalmodel runs to

quantify the impact of the additional data on model skill.

Runs using all four models, with and without assimilation

of data from these coastal and inland profilers, were

verified against shipborne lidar measurements.

FIG. 1. Google Earth image of the northeastern United States, showing ship tracks for the entire NEAQS-04

campaign, from 9 Jul to 12 Aug 2004 (gray circles). Locations of inland wind profiling radars (white pins).
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The paper is organized as follows: Section 2 discusses

the NEAQS-04 research cruise, the measurement and

modeling systems used in the project, as well as the ap-

proaches and metrics used for the model validation. It

also discusses the effects of the vertical interpolation

and provides examples of two approaches: first, when

measurements are interpolated to model output levels

(lidar to model); and second, when modeled variables

are interpolated to the heights of lidar measurements

(model to lidar). Section 3 presents an overview of wind

speed andwind direction during two periods selected for

model validation. The HRDL data analyses and lidar–

model comparisons are given in section 4. This section

also presents results from comparisons of measured and

modeled variables. Section 5 provides quantitative re-

sults of model validation using HRDL data, and pres-

ents statistical metrics between modeled and measured

winds along with the estimated impact of assimilation of

additional data from inland profilers on model accuracy.

Section 5 also discusses meteorological conditions as-

sociated with large deviations between measured and

modeled variables. Conclusions and recommendations

are given in section 6.

2. Measurement and modeling systems

Two air quality field studies, both aimed at charac-

terizing local pollution sources in the New England re-

gion, were conducted in the early 2000s (White et al.

2007). The first study was the NEAQS-02 campaign in

summer 2002 (Angevine et al. 2006; Darby et al. 2007)

and the second study was the NEAQS-04 field campaign

(Wolfe et al. 2007; Fairall et al. 2006), the dataset used in

the present study. In addition to further investigations of

local emission sources, NEAQS-04 was also part of a

larger research effort, the International Consortium

for Atmospheric Research on Transport and

Transformation—2004 (ICARTT-04), the major

goal of which was to characterize continental out-

flow of pollution from North America, which may

then be transported to Europe. It was therefore

necessary to deploy both atmospheric chemistry and

meteorological instrumentation to study key pro-

cesses producing these transports. Land-based, air-

borne, and shipborne instrumentation contributed to the

dataset, as described by Fehsenfeld et al. (2006).

The major offshore measurement platform was the

R/V Ronald H. Brown (RHB), which cruised around

the Gulf of Maine taking meteorological, air chemistry,

and some oceanographic data from 9 July to 12 August

2004. Tracks where the ship traveled during NEAQS-

04 are shown in Fig. 1. The ship’s remote sensing in-

strumentation included NOAA’s HRDL and a NOAA

915-MHz profiler. Wind profile measurements were

also available from radiosondes launched from the

deck of the ship every 6 h.

a. HRDL

The HRDL is a scanning, coherent, pulsed Doppler

lidar designed and operated by NOAA/ESRL for at-

mospheric boundary layer research, as described by

Grund et al. (2001). HRDL provides precise range-

resolved measurements of the line-of-sight or radial

wind, that is, the component of the velocity parallel to

the beam, and aerosol backscatter, at a range resolution

of 30m. Deployed on board the RHB, HRDL was op-

erated over the Gulf of Maine 24 h per day during the

NEAQS-04 field campaign (Wolfe et al. 2007; Pichugina

et al. 2012), providing accurate profiles of wind speed

and direction from the deck of the RHB every 15min.

Details of HRDL’s adaptations for marine use, such

as its motion-compensation system, HRDL technical

specifications, accuracy of lidar measurements offshore,

and scanning procedures, are described by Pichugina

et al. (2012). The HRDL system includes full scanning

capability in azimuth (conical), elevation (vertical slice),

and staring modes (Banta et al. 2002). Profiles of wind

speed and direction used in this study are calculated

from azimuth scans at constant elevation (conical scans)

using a velocity–azimuth display (VAD) procedure

(Browning and Wexler 1968; Banta et al. 2002, 2015).

RMS instrument-noise uncertainty for these mean pro-

files has been determined to be less than 0.1m s21

(Grund et al. 2001; Pichugina et al. 2008). Wind flow

properties during the cruise, including statistics and

distributions of wind speed and wind direction, fre-

quency of low-level jet (LLJ) occurrence, and wind

shear across the turbine-rotor layer, obtained from all

available Doppler lidar measurements during the

NEAQS-04 experiment, are given in Pichugina et al.

(2012, 2017) as examples of longer-term averages.

An analysis of coincident HRDL and radiosonde data

from the entire experiment shows good agreement be-

tween rawinsondes and HRDL horizontal wind com-

ponents, with correlation coefficients of 0.97 and 0.98 for

the two components, for all heights above 100m (Wolfe

et al. 2007). High correlation (R2 . 0.98) between the

two instruments was also shown in Pichugina et al.

(2017) for each individual height of measurement from

10 up to 2000m above the water surface. The correlation

is reduced below 100m as a result of the influence of the

ship’s atmospheric wake on the rawinsonde measure-

ments at these levels, whereas HRDL profiles are ob-

tained from conical scan data (as just described) that

sample well outside this wake. Because of the low fre-

quency (every 6 h) and uncertainty of measurements
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within the turbine-rotor layer of the atmosphere (taken

here to be roughly 50–150m), rawinsonde measure-

ments are not used in the present study for model

evaluation.

b. Profilers: Wind profiling radars

During NEAQS-04, hourly profiles of wind speed and

direction were also obtained from the ship-based

915-MHz profiler (33-cm wavelength: Carter el al.

1995; Strauch et al. 1984; Wilczak et al. 1996), which

could be operated in twomodes, high resolution and low

resolution. In the high-resolution mode, the first avail-

able measurement height was 216m with a vertical

measurement step of 58m; in the low-resolution mode,

the lowest measurement height was 310m, with vertical

spacing of 101m (White et al. 2007). Detailed analysis

and comparison between ship-basedHRDL and profiler

measurements show a reasonable agreement between

the two instruments, with slightly increased scatter and

reduced height coverage for the high-resolution mode

‘‘as might be expected because of lower transmitted

power and therefore lower return signal in this mode’’

(Wolfe et al. 2007, section 3).

Eleven land-based profilers were deployed along the

U.S. East Coast and other locations in the northeast-

ern United States during the summer of 2004 for the

NEAQS-04 experiment (Fig. 1). These profilers were also

915-MHz radars, having vertical resolutions of ;60m

(high-resolution mode) and ;100m (low-resolution

mode). The maximum height with detectable signal var-

ied with atmospheric conditions (a stronger backscatter

signal occurs in a moister, more turbulent atmosphere),

but the coverage typically ranged from the lowest level up

to around 1.5km above ground level (AGL) for the high-

resolutionmode and up to around 4kmAGL for the low-

resolution mode. As with the RHB profiler, the lowest

height of measurement was different for high- and low-

resolution modes and varied among the profilers used:

70–190m for the high-resolution mode and 100–300m for

the low-resolution mode.1 A listing of the first available

height and vertical resolution of all 11 land-based and

shipborneprofilermeasurements used duringNEAQS-04

is provided in Banta et al. (2014).

c. NOAA model forecast systems used in the study

In this study we used two analog versions of NWP

models run at the NOAA/National Centers for Envi-

ronmental Prediction (NCEP) and the Earth System

Research Laboratory (ESRL) Global Systems Division

(GSD). These are 1) an experimental hourly updated

version of the North American Mesoscale Forecast

System (NAMRR; Carley et al. 2015; Rogers et al. 2009)

model and its finer-resolution nest, the NAMRR-

CONUS-nest; and 2) the hourly updated RAP model

(Benjamin et al. 2004, 2016) and its embedded HRRR

model. Operational renditions of these models at NCEP

provide foundational meteorological predictions at time

and space scales useful to the wind energy industry. The

two versions are based on different model frameworks:

the NAMRR models were derived from the Non-

hydrostatic Multiscale Model on the B grid (NMMB;

e.g., Janjić 2003; Janjić and Gall 2012) and the RAP–

HRRR model came from the Advanced Research

version of the Weather Research and Forecasting

(WRF-ARW) Model.

Maps showing the model domains used in this study

are given in Fig. 2. The NAMRR and the RAP were

run at horizontal grid intervals of 12 and 13 km, re-

spectively, and for the finer-mesh sizes, the NAMRR-

CONUS-nest had a grid interval of 4 km and the

HRRR had 3-km grid spacing (Banta et al. 2014).

Tables 1 and 2 give an overview of the model config-

urations and physical parameterizations used in these

2012 versions.

For initialization, the NAMRR parent/nest and

the RAP are updated hourly using the 3DVAR algo-

rithm of the Gridpoint Statistical Interpolation analysis

system (GSI) (Wu et al. 2002). Both NWP systems em-

ploy a partial-cycling procedure (Rogers et al. 2009) in

POWER that fully cycles the land states and in-

cludes a regular reinitialization and spinup of the at-

mospheric state from a global model [e.g., the Climate

Forecast SystemReanalysis (CFSR; Saha et al. 2010) for

POWER]. Specific information on the data assimilation

(DA) configurations for RAP, HRRR, and NAMRR

parent/nest for the POWER experiments are described

in detail by Banta et al. (2014). Further information for

the cycling DA system used for the operational RAP

and HRRR is described in Benjamin et al. (2016). All

NWP systems in POWER produce hourly forecasts out

to 18 h.

A truncated HRRR domain was used for this

POWER intercomparison centered over the northeast-

ern United States (Fig. 2; Banta et al. 2014, 2017, man-

uscript submitted to Bull. Amer. Meteor. Soc., hereafter

B17). The model physics and data assimilation used in

these RAP and HRRR versions for this study (Table 2)

corresponded to the 2012 versions of the RAP version 1

model/assimilation options (see Benjamin et al. 2016).

For example, current features, such as the hybrid ensemble–

variational data assimilation, were not available for

1More information on the technical parameters of the NOAA

profilers can be found at http://www.esrl.noaa.gov/psd/data/obs/

instruments/WindProfilerDescription.html.
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RAP/HRRR or NAMRR/NAMRR-CONUS-nest, nor

was any assimilation of radar reflectivity data. These trial

versions used for the POWER project are referred to as

the RAP2012-P and HRRR2012-P, respectively, in B17,

but we will refer to them as RAP and HRRR, respec-

tively, for simplicity.

In this study model values were stored hourly on the

hour.We used hourly averagedHRDLwind profile data

to validate output wind profiles from retrospective runs.

A second objective was to assess the impact of assimi-

lating the hourly profiler data on model skill offshore.

This was done by comparing the differences in model

errors for the retrospective runs, using HRDL profile

data as a reference, for output model wind values

without (control) versus with (experimental) assimila-

tion of the data from the 11 coastal and inland profilers.

The selected periods for these retrospective models runs

are described in section 3. For comparisons of modeled

versus HRDL-measured winds, the gridded model wind

values were either extracted for the nearest model grid

point to the ship location (NAMRR and nest) or in-

terpolated horizontally to the ship position using a

parabolic interpolation scheme (RAP-HRRR). The

former is the same procedure used operationally to

generate model soundings (i.e., ‘‘BUFR soundings’’)

at a desired location. These values were then linearly

interpolated vertically to the lidar measurement heights.

It is worth noting here that the ship-location profile data

TABLE 1. The 12-km NAMRR and 4-km NAMRR-CONUS-nest domain configurations (Banta et al. 2014); CONUS, conterminous

United States.

12-km NAMRR parent description Configuration

Points in x, y, z directions 954, 835, 60

Time step (s) 26:666

Microphysics parameterization Ferrier et al. (2002, 2011)

Boundary layer parameterization Janjić (2001)

Convective parameterization Janjić (1994)

Longwave/shortwave radiation parameterization Iacono et al. (2008)/Mlawer et al. (1997)

Land surface model Ek et al. (2003)

Gravity wave drag parameterization Alpert (2004)

4-km CONUS nest description Configuration

Points in x, y, z directions 1371, 1100, 60

Time step (s) 8:888

Convective parameterization Janjić (1994): Modified to be less active for higher resolution

Gravity wave drag parameterization None

FIG. 2. Google maps of model domains: (a) NAMRR (orange) and NAMRR-CONUS-nest (cyan), and (b) RAP

(orange) and HRRR (cyan).
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were extracted before they were provided to us, so we

had no control over how they were handled. We have

done sensitivity tests with another subsequent dataset

over land and found that using different techniques in

this way produced only small differences between the

methods.

1) EFFECT OF VERTICAL INTERPOLATION

To evaluate model performance using lidar data and

to obtain comparison statistics, modeled and observed

wind flow variables need to be interpolated to the same

heights.

For this analysis, measurement data could be in-

terpolated to model grid heights, or model values to

measurement heights. If measured data were at coarser

resolution relative to the model’s resolution, such as the

wind profiling radar (WPR) and NAMRR in Fig. 3, then

either technique may yield similar results. But if the

measurements are at much finer resolution than the

model’s resolution, such as the lidar data in Fig. 3, then

this finescale information should be used in calculating

model errors through a layer. Such ‘‘model to lidar’’-

level interpolation evaluates the model against the de-

tailed atmospheric structure observed and provides

more data points within a layer for better error statistics.

Examples of these interpolation approaches are il-

lustrated in Figs. 4 and 5 using HRRRmodel output for

illustration (NAMRR showed the same behavior).

Time–height cross sections of wind speed in Fig. 4 are

shown for lidar data (Figs. 4a and 4d) and for HRRR

values (Figs. 4b and 4e). The left panels are all at lidar

resolution, and the right panels show the coarser model

resolution. Figure 4a illustrates the detailed atmospheric

structure measured by HRDL, and Fig. 4e shows the

HRRR model initial (hour 0) simulated winds for

the same period. When the coarse model output is in-

terpolated to the lidar levels (Fig. 4b), the plot looks

smoother but no new information on atmospheric

vertical structure is added. But when the finescale lidar

data are averaged to the coarse resolution of the model

(Fig. 4d), considerable vertical structure is lost.

Figures 4c and 4f show the model-minus-lidar differ-

ences (biases), or errors, calculated at the finescale lidar

levels (Fig. 4c) and at the coarser-scale model grid

heights (Fig. 4f). Careful inspection of these two panels

reveals that the vertical structure and magnitudes of

these errors differ between the two plots. We conclude

that employing the high-resolution data of the left

panels in calculating model error is more appropriate

than using the coarse data from the right panels, as this

TABLE 2. The 13-km RAP and 3-km HRRR domain configurations for POWER (from Banta et al. 2014, B17).

13-km RAP description, CONUS domain reduced from whole domain Configuration

Points in x, y, z directions 758, 567, 51

Time step (s) 60

Cloud microphysics parameterization Thompson et al. (2008)

Boundary layer parameterization Janjić (2001)

Convective parameterization Grell 3D/Grell shallow cumulus

Longwave/shortwave radiation parameterization Chou and Suarez (1994)/Mlawer et al. (1997)

Land surface model Smirnova et al. (1997, 2000)

3-km HRRR description reduced from the whole domain Configuration

Points in x, y, z directions 520, 450, 51

Time step (s) 20

Convective parameterization Turned off

FIG. 3. Heights used for the mean wind profile from (a) shipborne

measurements in the first 600 m MSL, and (b)–(e) vertical

levels of wind output from NWP models used in the study.

Rotor layer of 50–150 m (gray bar). Heights of shipborne

profiler measurements for (f) high-resolution mode (solid

line) and (g) low-resolution mode (dashed line).
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FIG. 4. Time–height cross sections of wind speeds and model bias (m s21, color scales at top) and direction

(arrows) on 11 Aug, shown up to 1.5 km MSL. Values displayed at (left) finescale HRDL resolution and (right)

coarser-resolution model heights. (a) HRDL data shown at actual finescale lidar height levels. (b) Model initial

values interpolated to lidar levels. (c) Difference (bias) between interpolated model values and HRDL-measured

wind speeds (middle panel minus upper panel) portrayed at finer lidar resolution. (d) HRDL speeds averaged to

model grid intervals. (e) HRRR-modeled wind speed and direction on HRRR’s vertical grid. (f) Difference be-

tween model and lidar on HRRR grid.
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allows finescale structure of the lidar data, with such

features as thin shear layers and LLJ noses, to be ac-

counted for in the error computations. These plots also

suggest that increasing the vertical resolution of the

simulations should have a greater impact on improving

model skill than increasing horizontal resolution, espe-

cially over the ocean, where horizontal gradients are

gentler than over many land surfaces.

To further illustrate details of the interpolation, Fig. 5

shows profiles of the difference (bias) between mea-

sured and HRRR-modeled wind speed profiles in the

lower 300m AGL for 6h (1000–1500 UTC) during the

same day as in Fig. 4. In general the ‘‘lidar to model’’

lines (red) fall near the model-to-lidar points (blue),

but discrepancies of up to 0.5m s21 can be seen. These

differences are not taken into consideration when

only model-level data are used in the lidar-to-model

case, such as when calculating mean statistics over

a vertical layer. Similar analyses for other days (and

for the NAMRR) show that in most cases models

underestimate wind speed (negative bias) for both ap-

proaches, but occasionally a positive bias was also ob-

served (such as for hour 11; Fig. 5, above 100m). In

general—and not surprisingly—models with larger ver-

tical grid spacing exhibit larger discrepancies between

the two methods.

Hereafter, model output values are interpolated to

lidar heights, to allow us to compare errors for differ-

entmodels at a single height (such as turbine hub height)

or through layers of interest and to capture the true,

measured variability of the winds in finer detail.

The increased number of points within the averaging

layer also provides more robust validation statistics, as

mentioned.

2) EFFECTS OF AVERAGING DEPTH

Averaging over deeper layers should produce better

model–measurement agreement, but what is the mag-

nitude of this improvement? The POWER dataset is

well suited to quantify this effect, consisting (as it does)

FIG. 5. Examples of bias (WSMODEL2WSlidar) in wind speed profiles measured by lidar and modeled by HRRR

for 1000–1500 UTC 11 Aug 2004. Modeled profiles are shown for the initial time (forecast 0). Bias in observed and

modeled winds when the lidar-to-model interpolation approach is used (red lines); heights of model output (red

circles). Bias in observed and modeled winds when the model-to-lidar interpolation approach is used (blue lines);

heights of lidar measurements (blue diamonds). The turbine-rotor layer of 50–150m is indicated (horizontal

dotted lines).
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of both detailed profile measurements and high-

resolutionmodel output. Coefficients of determinationR2

and root-mean-square error (RMSE) as a function of

forecast lead time for the NAMRR-CONUS-nest and

NAMRRmodels during the August period are compared

in Fig. 6 for winds at hub height (here, taken to be 100m)

and for mean values over three distinct vertical-layer

depths: the turbine-rotor layer (here, 50–150m), the layer

from 10 to 300m, and the layer from 10m to 1km MSL.

The number of points involved in the RMSE calculations

was 168 at hub height, 1176 in the rotor layer, 2688 in the

lowest 300m, and 6048 in the lowest 1000m. These

numbers are for lead hour 0, and they slightly decrease by

lead hour 9 as a result of occasional gaps in the data. RAP/

HRRR output could just as well have been used for this

illustration without affecting the conclusions.

The R2 (left) and RMSE (middle) columns of Fig. 6

demonstrate better agreement between measured and

FIG. 6. Error statistics between lidar-measured andmodeled wind speed are shown for the August study period as a function of forecast

lead time. (from left to right) Coefficient of determination R2, RMSE, and model RMSE improvement as a result of the assimilation of

coastal profiler data. Winds from NAMRR (red) and NAMRR-CONUS-nest (blue) for experimental (solid) and control (dashed) runs.

Statistics computed at a height of (a) 100m, (b) through the rotor layer of 50–150m, (c) through the lowest 0.3 kmMSL, and (d) through

the lowest 1 km MSL.
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modeled winds when averaged over a deeper layer

(bottom panels) than over shallower layers. Deeper-

layer data indicate smaller RMSEs by ;0.5m s21

(;20%) and larger coefficients of determination (0.9 vs

0.8) compared with these statistics found for the turbine-

rotor layer or for the hub height.

The rightmost column in Fig. 6 shows the improvement

of the model forecast as a function of forecast lead time

as a result of assimilation of additional data from coastal

profilers, which will be further investigated in section 5.

The improvement was computed as a difference inRMSE

between measured winds and those modeled by the ex-

perimental and control runs (RMSEEXP and RMSECNTR,

respectively), normalized by RMSECNTR:

Improvement(%)5 1003 (RMSE
CNTR

2RMSE
EXP

)/RMSE
CNTR

. (1)

Similar to the other statistics, larger improvement was

found for averages over deeper layers. For example, up

to 10% improvement was found early in the simulations

and positive values for up to seven forecast hours for the

1-km MSL layer (bottom panel) compared to ,4%

improvement found for as few as 2h (NAMRR-

CONUS-nest) for the hub-height winds (top panel).

To better visualize the differences in statistics found

for different layers, including hub height, these statistics

are plotted together in Figs. 7 and 8. Figure 7 shows that

the most exaggerated differences between RMSE sta-

tistics for the different layers occurred at the initial time

of the forecast, and these differences decreased with

forecast lead time. A clear stratification is also shown in

Fig. 8 for R2, when the R2 is calculated for each layer.

Deeper layers showed larger correlations (R2), but un-

like RMSE, this trend tended to persist through the 9-h

forecast period shown.

Assessment of the model accuracy later in section 5

will be performed for the 10–500-mMSL layer (red lines

in Figs. 7 and 8), which is important for wind turbine

operations. It was shown (Pichugina et al. 2017) that the

majority of LLJs during NEAQS-04 occurred there,

producing shear through the turbine-rotor layer. Shear

and shear-generated turbulence in the rotor layer can be

strong enough to increase turbine loads and adversely

affect hardware and operations (Banta et al. 2006;

Kelley et al. 2004).

3. Periods selected for model validation

Two study periods, limited to one week each by

computer-resource constraints, were selected from the

NEAQS-04 dataset for model validation. The selection

of these periods was primarily based on the availability

of HRDL measurements for several consecutive days,

FIG. 7. RMSE between measured and NAMRR and NAMRR-CONUS-nest modeled winds are shown as

a function of forecast hour out to 9 h. Results in all panels are shown for hub height and formean values over several

vertical layers according to the legend in the bottom-right plot. (top) Control runs and (bottom) experimental runs

of both models.
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preferably for a week. The first study period selected

was 6–12 August, corresponding to the longest lull

between frontal passages according to White et al.

(2007). The second study period (10–17 July) includes a

day of rain on 14 July; however, model runs were

conducted over the 8-day range to avoid having to re-

start the run on 15 July. Although the intervening rainy

day was not originally intended for analysis, we have

included this period in this study to assess the ability of

the models to predict atmospheric events associated

with a transient mesoscale cyclonic storm system. In

addition to the continuity of available measurements,

other factors considered for the selection of study pe-

riods included a variety of wind flow conditions, the

presence of LLJs, and the ship-track pattern, as a

mixture of tracks close to the shore and farther out to

sea was desirable. Two days of measurements (13 and

16 July), when the ship was stationary for several hours,

were included to obtain comparison statistics free of

spatial variability. Ship tracks for the two study periods

are shown in Fig. 9.

Overview of wind speed and wind direction during
selected periods

Sequential 15-min HRDL-measured wind profiles

were combined into time–height plots to provide an

overview of the range and diurnal variability of wind

flow conditions for all days in the selected periods.

Figure 10 shows a time–height cross section of the lowest

500m of profile data for 7 days each of the July (top) and

August (bottom) study periods. Wind speed values are

color coded and plotted as a function of time (UTC) for

each day, and wind direction is shown by arrows. These

plots illustrate temporal and vertical variability of the

wind flow, which result from time-dependent changes in

the flows, from either the spatial variability of the flows,

or from a combination of both. Stronger winds and LLJ

events within turbine-rotor heights and above are evi-

dent on 16–17 July and 10–12 August.

Profiles of wind speed and direction in these plots

were computed from the conical scans only, so occa-

sional gaps appear in the cross sections, when other

scans (e.g., elevation or staring) were being performed

over the entire 15-min period. Other blank (white) areas

are associated with times when lidar measurements are

unavailable because of thick fog and precipitation, such

as can be seen in Fig. 10a between 1700UTC 13 July and

1400 UTC 15 July. Many episodes of high wind speed

shear across the presumed turbine-rotor layer (between

the horizontal parallel black lines) can be seen during

both periods. Because of the variable vertical structure

of winds, estimating wind resources based on near-

surface measurements obtained from buoys or occa-

sional ships can lead to significant errors (Pichugina

et al. 2012, 2017).

Besides the day-to-day differences in meteorological

conditions between the two selected periods, the dif-

ferences in wind properties also reflect spatial differ-

ences in the location of the ship (Pichugina et al. 2012).

The variability of hub-height (100m) wind speed along

FIG. 8. As in Fig. 7, but for R2.
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ship tracks during each selected period is shown in

Fig. 11. Plots like these for the entire cruise are pre-

sented by Pichugina et al. (2017). Figures 10 and 11 il-

lustrate the forecasting challenge posed by the observed

temporal and spatial variability of winds, and show the

need for offshore profile measurements through the

MABL to validate models.

Distributions of wind speed and direction in the rotor

layer are shown in Fig. 12 for all hours (gray bars), for

daytime/evening transition hours (1500–2400 UTC,

red), and for nighttime/morning transition hours (0000–

1500 UTC, blue). Wind speeds during both periods

varied from 0 to 15ms21, with distributions slightly

shifted toward lower wind speeds for daytime hours and

toward stronger winds at night. Wind directions also

varied widely, with distinct westerly and southwesterly

modes. Westerly and southwesterly winds in the Gulf of

Maine were common in summer 2004 (Angevine et al.

2006; Fairall et al. 2006; Pichugina et al. 2012). However,

some periods of northerly and northwesterly winds were

also observed (see Fig. 10 for 11 July and 9 August),

producing a second mode in wind direction histograms

(Fig. 12d).

Mean statistics of these distributions (Table 3) show

stronger nighttime winds during both periods compared

to daytime hours. Since the HRDL measurements dur-

ing NEAQS-04 are the only available high-resolution

measurements offshore, we added the three bottom

rows to Table 3 to show percentages of wind speeds in

the rotor layer of a 1.5-MW wind turbine below the

nominal cut-in threshold (0–4m s21), between the cut-in

and rated winds (4–12m s21), and greater than rated

speeds (12–25ms21). The results indicate wind condi-

tions that would be favorable for turbine operations in

;74%–85% of the time for both periods. Obviously

FIG. 10. Time–height cross sections of lidar-measured wind

speed (color bar, scaled from 0 to 16m s21) and direction (arrows:

up 5 north), computed from HRDL measurements for the (top)

July and (bottom) August 2004 study periods. The vertical axis is

height above sea level (m), and the horizontal axis show days from

each selected period. The presumed turbine-rotor layer between 50

and 150m is indicated (horizontal dashed lines).

FIG. 9. Ship tracks during the two study periods: (a) 10–17 Jul and (b) 6–12Aug. Tracks for each day are shown by

the color according to the legend in the upper-left corner of each plot. The white rectangles represent an area of

241 km 3 250 km with the following coordinates at the corners: NW (718N, 448W), SW (688N, 448W), NE (718N,

41.58W), and SE (688N, 41.58W). Each circle represents the location of a lidar-measured profile of wind speed and

direction along ship tracks.
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longer-termmeasurements are needed to provide stable

statistics for periods when winds are less than 4ms21

and turbines will not operate, or when winds exceed

cutoff speeds larger than 25ms21 (we did not observe

such strong winds during the entire cruise).

4. Direct comparisons of measured and modeled
winds

Figures 13–15 show examples of direct compari-

sons of observed and modeled winds without verti-

cal interpolation using the NAMRR models, noting

that corresponding RAP-HRRR examples behave

similarly. These comparisons are shown for the ini-

tial conditions (lead hour 0) to investigate how well

models agree with the measurements. Sample profiles

of measured and NAMRR-modeled wind profiles are

shown in Fig. 13, where black curves represent lidar

data, and NAMRR-CONUS-nest and NAMRRmodel

values are shown by red and blue colors, respectively.

Solid red and blue lines in this figure represent model

experimental (profiler assimilation) runs, and dashed

lines show winds from the control runs. In these cases

one sees large lidar–model discrepancies associated

with LLJ ‘‘noses’’ or maxima, which were more prev-

alent during nighttime hours (Pichugina et al. 2017),

producing large wind speed errors in the turbine-rotor

layer at speeds that would produce even larger relative

errors in predicted power production, as also found by

B17. Analysis of all hourly averaged profiles from both

periods, similar to those shown in Fig. 13, shows better

for periods of weak or moderate wind speeds without

LLJ structure (Banta et al. 2014).

In many cases the models underestimate the ob-

served wind speeds, as in the top panels of Fig. 13 below

500m. In other cases the models overestimate the wind

speeds (e.g., Fig. 13, top panels, above 500m). Aver-

aged over longer-term periods (Fig. 14), positive and

negative deviations can compensate, leading to better

agreement between observed and modeled mean wind

speed profiles; for example, Fig. 14 shows the means for

the August period. Standard deviation bars indicate

variability for the weeklong sample, reflecting the di-

versity of wind conditions encountered during this

study period.

The larger deviations below 200m during night-

time hours (Fig. 14, middle panels) are most likely

due to LLJs, which produce wind maxima in this

layer (see Fig. 13; Pichugina et al. 2017) but which get

smoothed out of the mean profiles. As shown in

Fig. 14 (middle panels), winds from the experimental

runs at night agree better with measurements than

winds from the control runs for those hours, illus-

trating the effectiveness of assimilating the land-

based profiler data. Quantitative assessment of the

impact of profiler data assimilation is further in-

vestigated in section 5.

Time series of modeled winds at the fourth level of all

models and those measured by HRDL at the closest

height to this level are shown in Fig. 15 for all days in the

FIG. 11. Lidar-measured wind speed at 100m along ship tracks during (a) 10–17 Jul and (b) 6–12 Aug. Winds are

color coded from 0 to 15m s21 according to the color bar at the top of the figure.

OCTOBER 2017 P I CHUG INA ET AL . 4289



August period. These examples show reasonable

agreement in wind speed except for some episodes of

stronger winds, such as in 10–11 August (see also

Fig. 10). A small contribution to the differences in

deviations of modeled winds during episodes of larger

vertical wind shear may be due to height differences of

model output used for these plots: RAP at 165.8m,

HRRR at 164.3m, and lidar at 164.2m; and NAMRR at

FIG. 12. Distribution of rotor layer (50–150m) wind (a),(c) speed and (b),(d) direction from lidar data during two

periods selected for the study: (top) 10–17 Jul and (bottom) 6–12 Aug. All data (gray), and data selected for

daytime/evening transition (1500–2400 UTC, red) and nighttime/morning transition (0000–1500 UTC, blue) hours.

The total number of occurrences in each bin is indicated along the left vertical axis of the histogram, and the

percentage of these occurrences is shown along the right vertical axis. Mean and median values of each distribution

are shown in Table 3.

TABLE 3. Mean values of turbine-rotor-layer wind speed and wind direction distributions from lidar.

Variables Mean values

10–17 Jul 6–12 Aug

All hours Daytime Nighttime All hours Daytime Nighttime

Wind speed (m s21) Mean 7.42 5.99 8.98 7.31 6.77 7.83

Median 7.28 6.27 8.88 7.43 6.16 7.97

Std dev 3.32 2.87 3.07 3.19 3.31 2.98

Wind direction (8 from N) Mean 205.5 189.7 223.0 249.3 247.8 250.8

Median 211.0 196.7 222.9 256.5 252.6 257.0

Std dev 70.2 67.2 69.6 46.4 47.5 45.3

Speed range (m s21) Wind speeds in the rotor layer (%)

,4 15.6 23.7 6.3 12.5 15.2 9.8

4–12 73.2 69.8 77.1 78.2 76.8 79.6

12–25 11.2 6.5 16.6 9.3 8.0 10.5
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143.6m, NAMRR-CONUS-nest at 145.1m, and lidar at

141.3m.

5. Results: Validation of models by lidar data

a. Time–height comparisons

Comparisons of time–height cross sections of mea-

sured versusmodeledwind flowprovide a semiquantitative

picture of the model performance. Figure 16 shows

examples of time–height cross sections of the HRDL-

measured wind speed data (top panels) plotted against

modeled winds from control and experimental runs of

the NAMRR and NAMRR-CONUS-nest models for

forecast lead hour 0. Examples are given for 2 days of the

project: The left five panels are for 17 July and the right

five panels are for 9 August, each characterized by dif-

ferent wind regimes. The results for RAP-HRRR (not

shown here) are similar.

During these days, measurements, as well as extracted

modeled winds, were taken along ship tracks at differ-

ent distances from the shore (Fig. 11) and water depth.

On 17 July, the ship cruised over deep (140–180m)

waters of the open ocean 60–160 km from the coast. On

9 August, the ship sailed northeast out of Boston,

Massachusetts, along the coast over shallow (10–25m)

waters at 5–7 km from shoreline toward Cape Ann.

After about 30 km, the ship turned southeast toward

open ocean, with the farthest point about 60 km from

the coast.

FIG. 13. Examples of hourly averaged lidar-measured and modeled wind profiles on (top) 16 Jul and (bottom) 9 Aug for lidar profiles

(black), and NAMRR-CONUS-nest (red) andNAMRR (blue). Experimental runs (solid) and control runs (dashed). Symbols indicate 35

heights of lidar measurements and 17 heights of model outputs in the first 1 km AGL. Time (UTC) is shown in the upper-left corner of

each graph.
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The time–height comparisons show that the overall

features and trends of the wind flowmeasured at various

locations and distances from the shore are represented

in the models. All models captured the wind direction

and wind speed pattern, and they show stronger winds

during nighttime/morning transition hours (0000–

1000 UTC) as well as episodes of LLJs in the lowest

300m on 17 July. Themodels also simulated the 9August

trend of wind flow that included episodes of weak surface

winds at 0200–0600 UTC and stronger nighttime winds

above 200m MSL. Quantifiable differences in flow

strength and timing can also be seen among the models,

and between models and HRDL-measured values. For

example, the LLJ episode (Fig. 16, left plots) is modeled

but misplaced in time and height, particularly in the low-

resolution model (NAMRR). Low wind conditions

(Fig. 16, right plots) are simulated by all models, but the

depth of this weak flow layer was overestimated.

b. Statistical analysis

The R2, bias, and RMSE between lidar-measured and

modeled winds were computed for the July and August

FIG. 14. Period-mean wind speed profiles for 6–12 Aug 2004 are shown for (top) RAP (blue) and HRRR (red) models and (bottom)

NAMRR (blue) and NAMRR-CONUS-nest (red) models. Profiles are shown as means for (left) diurnal period, (middle) nighttime

(0300–1200 UTC) hours, and (right) daytime (1500–2300 UTC) hours. Output is shown from the experimental model runs (solid) and

control runs (dashed); Lidar data (black solid). Symbols indicate the heights of measurements (black) and model output (red, blue). Plus/

minus standard deviation of lidar data (black horizontal) and models’ experimental runs (red and blue horizontal) for lead hour 0.
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periods for both the NAMRR and RAP modeling sys-

tems. These metrics were plotted as profiles for each

forecast hour, and as a function of forecast-hour lead

time averaged for the 10–500-m MSL layer.

Vertical profiles of period-mean statistical metrics for

lead hour 0 are shown in Fig. 17 for RAP and HRRR

(top row) and NAMRR and NAMRR-CONUS-nest

(bottom row) control and experimental runs during the

6–12 August study period. All models produced similar

trends in period-mean statistics, showing the same or

improved metrics for experimental runs (solid lines with

dots) compared to control runs (dashed lines), and the

improvement is generally more pronounced at higher

altitudes. As was the case for individual profiles (Fig. 13)

or mean wind speed profiles (Fig. 14), profiles of the

error statistics below 150m show larger deviations of

modeled winds versus lidar measurements than higher

in the MABL, as also found by B17.

Figure 18 illustrates the performance of all four

models for the August study period showing the RMSE

as a function of forecast lead hour for both scalar wind

(simple wind speed) and vector wind (which includes

directional deviations). During this period, the RMSEs

for the higher-resolution models in blue (HRRR and

NAMRR-CONUS-nest) overlap or fall below those of

the lower-resolution or ‘‘parent’’ models (red, RAP and

NAMRR) for a short time after initialization. It is of

interest to note that after that initial hour or so, the

coarser-resolution models exhibit lower RMSE error

statistics than the fine-mesh nests. This kind of degra-

dation of model skill with increasing grid resolution has

been noted before (e.g., Mass 2002; Mittermaier 2014).

It has been attributed to the fact that strong horizontal

variations exist on the smaller scales, and even if the

models were to capture this well, small displacements of

model horizontal structure with respect to the atmo-

sphere’s would produce model error versus a measure-

ment at a given location.

The overall impact of assimilation of the land-based

profiler data is summarized in Fig. 19, illustrating the

percent improvement in scalar and vector winds from

each model, averaged over the lowest 500m. In general,

during the August study period profiler assimilation

produced an improved initialization by ;0.2m s21 and

forecast improvement by as much as 5%–10% early

(generally in the first 2 h), with positive improvement

indicated out to 3–4 h. Using profiler data averaged over

the deeper 100–2000-m layer for 12 experiment days

during July and August, Djalalova et al. (2016) simi-

larly found forecast improvement early in the simula-

tion for cases with assimilation of the profiler data. But

with respect to parent versus nest grid interval over this

deeper layer, they did not find that the finer-mesh runs

exhibited larger errors after the initial hour.

For the July study period as a whole, in contrast to the

August case, the assimilation of profiler data produced a

drop in model performance (Fig. 20). After a brief

interval of forecast improvement (;1 h mostly), the

RMS error of the experimental profiler-assimilation

runs exceeded that of the control runs. In other words,

the assimilation of profile data from the profiler coastal

array made the model forecast worse at the location

of the RHB, consistent with results for the 100- to

2000-m layer.

FIG. 15. Observed and modeled (top) wind speed and (bottom) wind direction for 6–12 Aug 2004. Legend

indicates output from model experimental runs: (left) NAMRR and NAMRR-CONUS-nest and (right) RAP and

HRRR. Data are shown for initial conditions at the fourth level of all models. Lidar data (black) representing wind

speed and direction at the closest (less than 4m) height for each model.
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Meteorological conditions during this period were

dominated by a mesoscale cyclonic storm system that

passed through the southern portions of the Gulf of

Maine, producing easterly flow, rain, and fog over the

study region. Surface meteorological data recorded on

Appledore Island (White et al. 2007) on 13–14 July show

an eastward-propagating cold frontal passage at surface

levels. The frontal passage and accompanying wind speed

vortices were also evident on Doppler weather radar re-

flectivity maps and satellite images (neither shown).

As shown previously (see Fig. 10, top), lidar measure-

ments on 13 July were limited to 17h (0000–1700 UTC).

HRDLdatawere then unavailable until 1400UTC15 July

as a result of the heavy rain and fog conditions also ob-

served from the deck of the ship (Pichugina et al. 2014).

On the first day that the storm affected the study area

(13 July), data were taken from a stationary positionwhen

the ship was located ;15km from shore (ocean depth of

;80m). Changes in wind direction from southwesterly to

easterly, seen in the HRDL time–height cross section

(Fig. 21), were due to the cyclone vortex advancing into

the area. On 17 July (Fig. 10, top), the day after the storm

system moved off to the east, a time–height cross section

of HRDL winds shows southwesterly to westerly flow

weakening through the day.

For the easterly-flow period of 13–15 July, the region

being sampled by the RHB was thus upstream of the

coastal profiler array, so any influences of the profilerwind

data on the model forecast would have to be transferred

upwind by the model. During most of the rest of the

project, in contrast, the flow had a westerly component.

Thus, the Gulf of Maine during much of the project was

downwind of the profiler coastal array so that assimilation

of the profiler data would have a more direct downstream

impact on the model solutions over the study area.

To further investigate the error behavior usingHRDL

data during the July period, Fig. 22 shows RMSE as a

function of forecast lead time for 13 and 17 July

FIG. 16. Time–height cross sections of (top) lidar-measured and (four bottom panels) modeled wind speed and

direction for (left) 17 Jul and (right) 9 Aug 2004. The modeled winds used for this comparison are from control and

experimental runs of NAMRRandNAMRR-CONUS-nest as indicated at the top of each panel.Winds (m s21) are

scaled according to the color scale, vertical axes are height (mMSL), and horizontal axes are time (UTC).Modeled

winds are shown for lead hour 0 (forecast 0).
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individually. On 13 July, the RMSEs for the control and

experimental assimilation runs are about equal at ini-

tialization, but then the RMSEs from the experimental

runs rapidly increase with lead time relative to the

control runs. During the westerly component wind

conditions on 17 July, both assimilation model runs

show improvement out to a 12-h lead time as a result of

the assimilation of inland profiler data. This discrepancy

between days suggests that the anomalous behavior of

the models for the July period could be limited to the

stormy easterly precipitation period and that this period

dominates the July verification statistics. To verify this

hypothesis, the HRDL data for 13–15 July were ex-

cluded from the sample, and verification statistics were

calculated only for the combined 10–12 and 16–17 July

datasets. Figure 23 shows RMSE (top) and improve-

ment as a function of the forecast lead hour (bottom) for

the scalar wind (speed) from the models (RAP/HRRR,

left; NAMRR, right) for these 5 days. It shows smaller

RMSE for the assimilation runs than for the control runs

out to a lead time of several hours, in accord with the

results found for the August period.

These results are consistent with those of Djalalova

et al. (2016; refer to it for details) using the profiler wind

dataset for this July period (which was available for all

days, including 13–15 July) for all profilers in the coastal

array—the ones being assimilated into the models for

the experimental runs. They determined the RMSE of

model winds versus profiler winds, averaged over the

lowest 2000m MSL, and similarly found that after ex-

cluding certain easterly-flow profiler data from the ver-

ification dataset for those three July days, assimilation of

the coastal-profiler data improved model performance.

Including these data for those three days in the verifi-

cation dataset produced a significant degradation in

model performance.

FIG. 17. Profiles of period-mean statistics between measured and modeled wind speeds in 6–12 Aug 2004 at forecast hour 0. (top) RAP

andHRRR, and (bottom)NAMRR andNAMRR-CONUS-nest models. The legends indicate the experimental runs (solid lines) and the

control runs (dashed lines). Symbols indicate heights of interpolations to lidar measurements. Rotor layer of 50–150m (horizontal

dotted lines).
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The July decreases in model skill by the assimilation

of profiler data thus are most likely a consequence of a

3-day period of easterly winds over the Gulf of Maine

study region. In attempting to explain this behavior, the

most obvious issue is that the coastal profiler array is

poorly placed—downwind of the verification region—

for NWP model assimilation under easterly-flow con-

ditions. Any impact that the assimilation of these data

would have in the study region would have to be trans-

ferred upstream, and model processes—either numeri-

cal, model physics, or model initialization related—that

would do this aremore likely to degrade than to increase

the accuracy of the forecast. In general, such decreases

inmodel accuracy have been noted before. For example,

Morss and Emanuel (2002) and Semple et al. (2012)

found that assimilated measurements can at times

degrade a model’s analysis or prediction. The impact of

assimilation data on amodel forecast may depend on the

quality of the measurements, the nature of the forecast

model, the assimilation methodology, or how well the

atmospheric regime in question is represented by the

measured dataset (e.g., Morss and Emanuel 2002).

In our case, Banta et al. (2014) and Djalalova et al.

(2016) have opined that a lack of flow dependence in the

background error term used by the model’s 3DVAR

data assimilation algorithm is a likely contributor to this

problem. Subsequent to the model runs described in this

study, hybrid ensemble–variational assimilation was

implemented in RAP version 2 in 2014 at NCEP

(Benjamin et al. 2016). The present example illustrates

how assimilation of profile data in a model having static

background error covariance can, at least in some cases,

degrade the forecast in regions of the simulation domain

that are upstream, or in otherwise unfavorable locations,

relative to the sites of the assimilated measurements.

6. Summary and conclusions

This paper has presented an evaluation of model skill

in simulating and predicting winds aloft over the ocean

by comparing retrospective runs of two NWP forecast

models to shipborne Doppler lidar wind measurements

over the Gulf of Maine. Deployed on board the R/V

Ronald H. Brown during the 2004 NEAQS field cam-

paign, the NOAA high-resolution Doppler lidar provided

accurate motion-compensated measurements from the

water surface up to several hundred meters above mean

sea level. High-precision and high-vertical-resolution lidar

data provide an important capability for investigating and

understanding wind flow conditions that influence

model accuracy at turbine-rotor-layer heights and

above, and for evaluating model skill through at least

the lowest several hundred meters of the atmosphere.

These measurements have given insight into boundary

FIG. 18. RMSEs between observed andmodeled (top) scalar and (bottom) vectorwinds averaged over 50-m layer

MSL are shown as a function of forecast lead time for the August 2004 period. (left) RAP and HRRRmodels, and

(right) NAMRR and NAMRR-CONUS-nest models. RMSE from experimental (solid lines) and control (dashed

lines) runs according to the legend in each panel.
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layer behavior, including nocturnal stable and LLJ

conditions, which are among the most difficult atmo-

spheric conditions to characterize, understand, and

model (Banta et al. 2006, 2013; Pichugina et al. 2008;

Pichugina and Banta 2010), and the ability of forecast

models to simulate them.

The study presents validation of two different mod-

eling systems: a new hourly updated version of theNAM

FIG. 20. As in Fig. 18, but for the 10–17 Jul 2004 study period.

FIG. 19. Improvement (%) ofmodel wind forecast as a result of assimilation of the coastal profilers for theAugust

2004 study period is shown as a function of forecast lead time. (left) RAP (red) and HRRR (blue) models. (right)

NAMRR (red) and NAMRR-CONUS-nest (blue) models. Improvements are shown for mean RMSE from ex-

perimental and control runs in the 10–500-m layer MSL (see Fig. 18).
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forecast system, the NAMRR; and a 2012 version of

the hourly updated RAP system and associated em-

bedded finescale models, the NAMRR-CONUS-nest

and theHRRR, respectively. Two issues pertinent to the

analysis procedures were addressed. First, model values

were interpolated to the heights of the lidar data (rather

than vice versa) to preserve the finescale structure and to

increase the sample size for statistics. Second, the effect

of averaging over layers of different depth, where

deeper layers produce better error statistics, were

quantified, revealing, for example, that RMSEs calcu-

lated over a 1000-m layer were 20% smaller than those

for an individual level.

Lidar–model comparisons showed that all models

captured major trends in the wind field relatively well

but that larger quantitative discrepancies between

modeled and observed winds were evident below 100–

200m (e.g., Fig. 13) and during nighttime LLJs,

illustrating a need to improve boundary layer-to-surface

exchange physics.

A finding of the POWER study was that the finer-

resolution domain-embedded models produced worse

wind speed predictions than the coarser parent domains

for forecast lead times greater than about 3h, although

for shorter lead times the finer-resolution models

performed better. The underperformance of finer-

resolution models at these scales has been previously

pointed out (e.g., Mass 2002; Mittermaier 2014), and

these results show that similar behavior can be found

in accuratelymeasured hourly winds aloft over the ocean.

Lidar data also were used to estimate the impact of

additional data assimilation from 11 profilers located

along the U.S. East Coast by comparing these data to

model runs with and without the profiler data assimi-

lated. Assimilation of profiler data led to a few percent

(5%–10%) improvement in all models for the first 2–4

forecast hours. After that time, and even more dra-

matically for a 3-day period in July, the experimental

simulations (with profiler assimilation) performedworse

than the control runs. The significant degradation of skill

during July as a result of the assimilation was associated

FIG. 21. Time–height cross sections of wind speed and direction

on 13 Jul from hourly averaged lidar measurements and experi-

mental and control runs of NAMRR-CONUS-nest and NAMRR

models. Modeled winds are shown for lead hour 0.

FIG. 22. RMSE between observed and modeled winds in the first 500m MSL for (a) 13 Jul and (b) 17 Jul 2004.

RMSE for experimental (solid) and control runs (dashed) for NAMRR (red) and NAMRR-CONUS-nest (blue).
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with a mesoscale cyclonic storm system that passed

through the study region that generating a period of

easterly flow, which put the profiler-assimilation array

downstream of the region. Why the effects on model

skill upstream of the assimilation data are negative in-

stead of neutral is an important question that is not

answered here. The assimilation scheme and its back-

ground error covariance have been suggested as possible

contributors, but more in-depth measurement–modeling

studies will be required to address this issue.

It is noteworthy that two models having different ori-

gins, numerics, microphysical schemes, land surface

models, and other attributes produced many similar error

properties, including often similar error magnitudes,

similar fine-mesh versus coarse-mesh behavior, and a

similar response to assimilation of profiler data. This is

reminiscent of the study ofZhong andFast (2003, p. 1301),

who evaluated three significantly different mesoscale

models against a comprehensive measurement dataset

and found that the ‘‘types of forecast errors were sur-

prisingly similar’’ and exhibited similar sensitivities for all

three models. Such similarities indicate that some basic

aspects of contemporary NWP, such as the finite-

difference approach at currently achievable grid resolu-

tions,may impose fundamental limitations onmodel error

reduction and model skill (B17).
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